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Abstract-A mathematical model describing finite strains has been developed for transpression zones where no slip 
is allowed in any direction at the zone boundaries. This has been adapted to model transpression zones where the 
boundaries are inclined. The model can also be used to describe finite-strain patterns where material is incorporated 
into the deforming zone from one or both sides after the initiation of deformation, so that the deforming zone 
remains at a constant width, thus allowing large transpressional strains to be accommodated without the deforming 
zone closing to zero thickness. This model of ‘steady-state’ transpression can be used to explain some of the features 
of the South Mayo Trough, a late Silurian transpression zone in the west of Ireland. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Transpression is the deformation caused by two obli- 
quely converging zones, as defined by Harland (1971). 
Sanderson and Marchini (1984) were the first to describe 
such a deformation in terms of its kinematics. They 
considered a zone with neither volume loss nor horizontal 
slip at the boundaries, so that the shortening across the 
zone results in vertical extrusion (Fig. la). They factor- 
ized the deformation into simple-shear and pure-shear 
strain components and used the resulting matrix to model 
its kinematics. 

The Sanderson and Marchini (1984) model has been 
expanded by Fossen and Tikoff (1993) who also allowed 
for volume loss. Dias and Ribeiro (1994) used a similar 
method to model lateral escape (as opposed to vertical 
escape), vertical shear, compaction and tectonic volume 
loss. Tikoff and Teyssier (1994), Jones and Tanner (1995) 
and Teyssier et al. (1995) considered the effects of strain 
partitioning in transpression zones, where part or all of 
the strike-slip component of strain partitions into 
discrete, zone-boundary-parallel fault zones. 

One important limitation of the Sanderson and 
Marchini (1984) model was pointed out by Schwerdtner 
(1989); the zone boundaries are frictionless vertically, to 
allow the deforming zone to extrude, yet to transmit the 
simple-shear strain they must allow no slip horizon- 
tally-an unlikely scenario in real transpression zones. 
Robin and Cruden (1994) overcame this problem by 
allowing no slip in any direction at the zone boundaries, 
resulting in a heterogeneous deformation across the zone, 
causing the material to bulge out at the centre (Fig. lb). 
Robin and Cruden (1994) considered only instantaneous 
strain. By using an approach initially similar to that of 
Robin and Cruden (1994), the first aim of this paper is to 
extend their work, and investigate the variations of finite 
strain across a transpression zone where no slip is allowed 
at the zone boundaries. 

Another problem common to all transpression models 
is that they can only accommodate a finite amount of 

shortening across the deforming zone before the zone 
boundaries meet, so that no further transpressive strain 
can be accommodated. The second aim of this paper is to 
develop a model of ‘steady-state’ transpression, where 

b) 

Fig. 1. (a) Transpression as defined by Sanderson and Marchini (1984). 
Boundaries allow no slip horizontally, yet are frictionless vertically. j is 
the angle between the zone boundary in the horizontal plane and the 
movement direction. (b) Transpression as defined by Robin and Cruden 
(1994) with no slip in any direction allowed on the zone boundaries. /3 is 
the angle between the movement direction and the zone boundary, as 
first defined by Sanderson and Marchini (1984). Also defined is the 
coordinate system used. The z-direction is vertical, y is perpendicular to 
the zone boundaries, and x is horizontal and parallel to the zone 
boundaries, with the origin being shown by the black dot. The velocities 
U, v and w act in the X-, y- and z-directions, respectively. (c) Inclined 
transpression, for a value of p of 90”. 6 is the dip of the zone boundaries, 
as well as the angle between the zone boundary in the vertical plane and 

the movement direction. 
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the deforming zone maintains a constant width, so that 
infinite strains can be accommodated. 

MODEL 

The deforming zone is modelled as being rheologically 
homogeneous. The zone boundaries allow for no slip in 
any direction, so the vertical extrusion of material from 
the zone becomes concentrated towards its centre, setting 
up a vertical shear gradient across the zone. The pure- 
shear strain component is therefore heterogeneous. The 
model initially follows the method used by Robin and 
Cruden (1994). Equations for the velocities of particles 
caused by the pure-shear deformation described above 
are given as functions of the zone width and coordinate 
positions in the zone by Jaeger (1962, p 140). Changing 
some of Jaeger’s coordinates to fit with the coordinates 
used in this paper (see Fig. lb), namely Jaeger’s x 
coordinate for z and Jaeger’s u velocity for w, results in 
equations (la) and (2). 

The simple-shear strain is distributed evenly across the 
entire deforming zone, so the velocity at any given point 
in the zone can be found (Fig. 2). As an angular 
relationship between the pure-shear and simple-shear 
strains is required, the velocity of the zone boundaries in 
the x-direction (u> is given in terms of the velocity of the 
zone boundaries in the y-direction (I’), and the angle 
between U and the total displacement vector. Following 
Sanderson and Marchini (1984) this angle has been 
named /I. The velocity in the x-direction can therefore 
be given in equation (3) 

If the zone boundaries are not vertical, but inclined, 
and the zone-boundary movement remains horizontal, 
then a relative vertical shear occurs (Fig. lc). Robin and 
Cruden (1994) named this vertical shear ‘oblique trans- 

pression’. As the term ‘oblique convergence’ is already 
used for transpression generally, the term ‘inclined 
transpression’ is used for the vertical shear strain 
produced by the approach of inclined boundaries. The 
amount of vertical shear is described by 6, the dip of the 

u 
c 
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Fig. 2. The formation of equations describing the velocity variation 
across the deforming zone caused by the simple-shear component of 

strain. See text for parameter definitions. 

zone boundaries, which coincides with the angle between 
the zone boundaries and the movement direction when 
/I= 90” (see Fig. lc). To calculate the strain caused by 
inclined boundaries the model is run with vertical zone 
boundaries and appropriate vertical shear calculated 
from 6, and the zone is then re-orientated to the correct 
dip for the zone boundaries. The velocity in the z- 
direction, w, caused by inclined transpression can be 
found by exactly the same method as for the velocity in 
the x-direction caused by the horizontal simple shear, 
and is given in equation (lb) 

w= 
3 Vz(P - y*> 

2h3 

w’ = Vy/h tan(s) 

3 Vyij* - 3h2) 
v= 

2h3 

u = Vy/h tan@), 

la> 

lb) 

(2) 

(3) 

where x, y and z are position coordinates (as in Fig. 1 b); 
u, v and w are velocities in the x-, y- and z-directions, 
respectively; V is the velocity of approach of two 
boundaries; U is the total velocity across the zone, 
parallel to the zone boundaries; h is the zone half-width; 
fi is the angle between the zone boundary and displace- 
ment direction in the horizontal plane; and 6 is the angle 
between the zone boundary and displacement direction in 
the vertical plane, or the dip of zone boundaries. 

Following the method of Robin and Cruden (1994), 
equations (la), (1 b), (2) and (3) are differentiated to form 
the velocity gradient tensor, L. Note that this is different 
from the velocity gradient tensor given in Robin and 
Cruden (1994). This is partly to do with the different 
definitions of /I, partly due to Robin and Cruden’s use of 
strain rate parameters and normalized heights and 
widths, and partly due to a typing error in their dwidz 

term 
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(4) 

As the velocity gradient tensor is independent of x, it 
describes a section perpendicular to the zone boundaries 
across an infinitely long deforming zone with no 
variation in the x-direction. 

The incremental deformation gradient tensor, F,, can 
be found by multiplying L by dt, and adding the unit 
matrix, I 

Fi = L dt + I. (5) 

By calculating a series of incremental deformation 
gradient tensors and sequentially pre-multiplying each, 
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the finite deformation gradient tensor F can be approxi- 
mated 

F = FIF. (6) 

As the deforming zone narrows, particles move relative 
to each other and to the approaching zone boundaries. 
As L is a function of y, z and h, these parameters need to 
be updated after each increment using equations ( 1 a) and 
(2) to find the positions of each point and the new zone 
half-width. These are then used for calculating the next 
incremental deformation gradient tensor to be pre-multi- 
plied. This iteration is repeated until the required strain, 
measured by the shortening of the zone-boundary half- 
width, has been reached. 

The final step is to calculate the values and orientations 
of the principal axis of the finite-strain ellipsoid. F is 
decomposed into a stretch component, U, and a rotation 
component, R (see Malvern, 1969, chap. 4) such that 

where 

F=UR, (7) 

and 

U = (FTF)“* (8) 

R = U-‘F. (9) 

The lengths of the principal axis of the finite-strain 
ellipsoid can then be calculated by finding the eigenvec- 
tors of U, and the orientations of the finite-strain ellipsoid 
found by pre-multiplying the eigenvectors of U by R. 

To describe the symmetry of the strain, Flinn’s k value 
is found, using 

k= Q/S* - 1 

s2/s3 - 1 

and the strain intensity, d, is calculated using 

d = (S,/Sz - I)* + @Z/s3 - I)*, 

where sl, s2 and ss are the lengths of 
intermediate and short axes, respectively, of 

(10) 

(11) 

the long, 
the finite- 

strain ellipsoid. The strain intensity, d, represents the 
strain on a Flinn plot, measured as the distance from the 
(1, 1) origin, and is therefore dimensionless. 

Jaeger’s equations (Jaeger, 1962) describe the flow of 
material moving out of the zone vertically in two opposite 
directions between the two approaching plates. The 
model presented in this paper therefore predicts the flow 
upwards and downwards out of the deforming zone, with 
positive z coordinates resulting in upward extrusion, and 
negative z coordinates resulting in downward extrusion. 
However, for Jaeger’s equations to be valid, the flow out 
of the deforming zone must be uninhibited. Whereas this 
may be the case for the upward extrusion, with the top of 
the model representing the surface of the Earth, it is not 
the case for the downward movement, which is impeded 
by the lower crust and/or the mantle. However, it is likely 

that in a transpression zone there will be a roughly 
horizontal plane above which material will flow freely 
upward and below which material will flow downward. 
Jaeger’s equations should still be valid for regions above 
this plane, where z is positive. To avoid problems close to 
this plane, only results with a height equal to or above the 
width of the deforming zone are considered. 

Implementation 

Matlab@ matrix operations program, running on a 
UNIX work station, was used to write programs to 
perform the above calculations and plot results for a 
spread of points across the zone. The method used to 
calculate the finite strain is an approximation, with the 
results becoming more accurate the smaller the value of 
dt used. A value of 0.001 was used for dt; reducing this 
value resulted in negligible differences in the results, but 
extended the running time of the program from hours 
into days. To check on the accuracy of the model the 
volume loss was calculated for each point. All values 
calculated were less than l%, which compare well with 
the theoretical value of zero. In addition, the model was 
run for pure wrenching, with the results exactly matching 
those predicted by theory (Ramsay, 1967). The model 
was also run for one iteration, and produced similar 
results to the instantaneous strain calculated by Robin 
and Cruden (1994). 

RESULTS 

The predicted particle displacement paths described by 
an array of points with uniform final positions are shown 
in Fig. 3. Note that it is the values of y and z relative to 
each other and to the zone half-width, h, that are 
important rather than their absolute values. The axes of 
the plot in Fig. 3 and subsequent plots are therefore 
labelled in terms of multiples of the final zone half-width, 
h. This has the implication that the model can be scaled 
by any factor, to compare with real transpression zones 
of any size. 

OJ I ___. ! 
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Fig. 3. Particle displacement paths for ~1=67% in terms of the final 
half-width, h. Dashed lines indicate final zone-boundary positions. 

Displacement paths are chosen to give a uniform final distribution. 
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The ratio of final to initial zone half-widths, expressed 
as a percentage and called a, is used to measure the 
deformation applied to the transpression zone. Results 
predicted by the model for different a, fl and 6 values are 
shown in Figs 4-12. In these figures, and in the 
subsequent descriptions, the term ‘foliation’ is used to 
describe the plane containing the long and medium axis 
of the finite-strain ellipsoid, and the term ‘lineation’ is 
used to describe the long axis of the finite-strain ellipsoid 
(cf. Robin and Cruden, 1994). 

Strain intensity 

The simple-shear strain intensity is constant across the 
deforming zone, but the pure-shear strain intensity varies 
with position in the zone. Figure 4 shows this variation in 
pure-shear strain intensity for different c( values. For 
CI = 66%, the strain intensity is higher at the edges of the 
zone than in the centre at any one height. For ct = 33%, at 
any one height the strain is at a minimum somewhere 
between the edge and the centre of the zone, with the 
maximum strain intensity being either on the zone 
boundary or in the centre of the zone depending on 
height. For all CI values, strain intensity increases with 
increasing height. 

Foliation patterns 

The patterns of foliation for a = 66% (Figs 5 & 6) are 
similar to those predicted by Robin and Cruden (1994) 
for instantaneous strain. The foliations are, in general, 
vertical and more oblique to the zone boundaries in the 
centre of the zone, and less steep but more parallel to the 
zone boundaries at the edge of the zone. The patterns for 
finite strain are everywhere steeper and more parallel to 
the zone boundaries than for instantaneous strain. With 
lower fi values, the foliations are increasingly oblique to 

I 
) k-; ~ 

0 --_ - 01 
-h 0 h -h 0 h 

c1= 67% ci = 33% 

Fig. 4. Strain intensity variations for the pure-shear strain component 
of transpression for deformation zone shortening of a = 67% (left) and 
a= 33% (right). Contours are in intervals of two dimensionless units. 

See text for calculation and discussion. 

4 h 

! : 

the zone boundaries. As noted by Robin and Cruden 
(1994), the variation in foliation strike is opposite to that 
predicted within shear zones by Ramsay and Graham 
(1970). In Ramsay and Graham (1970) type shear zones 
foliation will initially be oblique (45”) to the zone 
boundaries. It is the concentration of the simple-shear 
strain in the centre of the zone which causes fabric 
rotation to be greatest in this region, resulting in the 
foliation having a maximum obliquity to the shear-zone 
boundaries at the edges of the zone. In the transpression 
model presented here, the pure-shear strain is greatest at 
the edges of the zone, so the foliation tends to be more 
parallel to the zone boundaries in this region, whereas in 
the centre of the zone the simple-shear strain is relatively 
larger, so the foliation is more oblique to the zone 
boundaries. As the simple-shear strain is evenly distrib- 
uted in the transpression model, there is no increased 
rotation of fabrics in the centre of the zone as in the 
Ramsay and Graham (1970) type shear zone. 

For increased shortening across the zone, to a = 33% 
(Fig. 7), the foliation patterns have a double swing in 
strike, from parallel to the zone boundary at the edge of 
the zone, becoming more oblique initially moving 
towards the centre of the zone, but then becoming less 
oblique to the zone boundaries in the centre. This is due 
to the relative importance of the pure-shear to simple- 
shear components. For larger amounts of shortening 
across the deforming zone, the pure-shear strain intensity 
is complex (see Fig. 4). The strains are highest at the zone 
boundaries and in the centre of the zone, with two 
minima either side of the centre of the zone. Where the 
pure-shear strain is high, the foliation is more parallel to 
the zone boundaries, where it is lower the foliation is 
more oblique, resulting in the double swing in strike. 

Lineation patterns 

Lineations in this model of transpression are almost 
always sub-vertical except in the centre of zones where 
a> 55%, and p is less than 13.28”. In this case the 
lineation is horizontal. However, as mentioned by Robin 
and Cruden (1994), when the lineation is horizontal the k 
value is less than 0.3, so that the lineation would not be 
expected to be seen in the field. The p value of 13.28” 
corresponds to Robin and Cruden’s ‘press’/‘trans’ ratio 
of 0.234. This fl value is lower than predicted by the 
Sanderson and Marchini (1984) model, where the switch 
from a vertical to horizontal stretching lineation occurs 
at p = 19.5”, which is due, as Robin and Cruden (1994) 
pointed out, to the concentration of the extrusion in the 
centre of the zone. This also explains why the switch from 
a horizontal to a vertical stretching lineation occurs at 
lower strains in this model than in the Sanderson and 
Marchini model for a set p value (compare Fig. 8 with fig. 
7, 10” path of Sanderson and Marchini, 1984). 

The azimuth of the lineation has a large variation 
depending on fl. For b = lo”, the lineation is sub-parallel 
to the strike of the zone boundaries (Fig. 6) whereas for 
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Fig. 5. Deformation patterns for fi = 50”, 6 = 90” and a = 67%. (a) Foliation and (b) lineation patterns. Horizontal layers are at 
heights of 2h, 5h and 8h after deformation. (c) k value patterns. (d) Lower-hemisphere, equal-area stereoplot of poles to 

foliation (solid arrow heads) and lineation (hollow arrow heads). Arrows point from the centre of the zone to the edge. 

lower p values the lineation is sub-perpendicular to the 
strike of the zone boundaries (Fig. 5). With increased 
shortening across the deforming zone, the lineation 
becomes rotated towards parallelism with the zone 
boundaries (Fig. 7). As with the foliation, although less 
marked, there is a swing in the azimuth of the lineation 
from the edge to the centre of the zone. 

k vulue patterns 

At the edge of the deforming zone the k value is-always 
equal to 1, and generally decreases towards the centre of 
the zone, with the minimum value dependent on the p 
value and the IX value. There is a complex pattern of k 
values at the base of the zone for fi values greater than 

13.28”. The complex area at the base of the zone is larger 
with decreasing a values, so that for levels less than 4h 
high k values may at first decrease towards the centre of 
the zone but then increase again. 

The Flinn plot in Fig. 8 shows how the k value varies, 
with decreasing a values, for a /I value of 10” at a level of 
4h. The ‘bouncing’ of the y = 0 path off the k = 0 axes of 
Fig. 8 coincides with the change in plunge of lineation 
from horizontal to vertical. 

INCLINED TRANSPRESSION 

Robin and Cruden (1994) pointed out that in many 
real transpression zones the strain is asymmetric, 
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Fig. 6. Deformation patterns for /3 = lo”, 6 = 90” and a = 67%. (a) Foliation and(b) lineation patterns. Horizontal layers are at 
heights of 2h, Sh and 8h after deformation. (c) k value patterns. (d) Lower-hemisphere, equal-area stereoplot of poles to 
foliation (solid arrow heads) and lineation (hollow arrow heads). Arrows point from the centre of the zone to the edge. Note 

that most of the variation in the plunge of the lineation is in a narrow zone in the centre of the deforming zone. 

whereas the model above predicts only symmetrical 
transpression zones. Robin and Cruden (1994) created 
asymmetrical transpression by moving one of the zone 
boundaries vertically with respect to the other, again 
for instantaneous strain only. Purely vertical move- 
ments in the Earth’s crust are not commonly observed, 
but if the boundaries of the deforming zone are 
inclined to the vertical (whilst still remaining parallel), 
and the transport direction remains horizontal, then 
the boundary walls will move relative to each other to 
create a shear component parallel to the dip of the 
zone boundaries (Fig. lc). This has been modelled by 
introducing a vertical shear component to the model, 
then tilting the model by the required angle. The 

results are plotted in Fig. 9, with the amount of 
vertical shear being indicated by 6, the dip of the zone 
boundaries. 

Features predicted by the model with vertical zone 
boundaries are still present, but there is now an 
asymmetry to the deformation. This asymmetry is small, 
particularly for foliation and lineation orientations, until 
the zone boundaries are almost flat-lying, with dips of 
10”. Whereas these dips may be reasonable for oblique 
thrust-ramp systems, they are not for the majority of 
transpression zones which tend to be steep (Sanderson 
and Marchini, 1984). It is therefore believed that inclined 
transpression cannot be responsible for making strongly 
asymmetrical transpression zones. 
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Fig. 7. Deformation patterns for p = W, 6 = 90” and a = 33%. (a) Foliation and (b) lineation patterns. Horizontal layers are at 
heights of 2h, 5h and 8h. (c)k value patterns. 

STEADY-STATE TRANSPRESSION 

A problem common to all models of transpression to 
date (e.g. Sanderson and Marchini, 1984; Dias and 
Ribeiro, 1994; Robin and Cruden, 1994; Tikoff and 
Teyssier, 1994) is that they can only accommodate a 
finite amount of displacement across the deforming zone 
before the zone boundaries meet and all of the deforming 
zone has been extruded to infinite strains. This problem 
can be tackled in one of two ways. Either (1) the pure- 
shear strain component diminishes over time, with the 
transpression becoming more and more wrench domi- 
nant until the deforming zone is a narrow strike-slip 
deformation zone (Fig. 10a) or (2) new material is 
constantly added to the deforming zone from the zone 

Fig. 8. Flinn plot for increasing strain for various points across the 
deforming zone at height z = 4h and p = 10”. The dashed lines represent 
the strain when the zone has been shortened to 75% and 50% of its 

original width. 

boundaries at a rate equal to (or greater than) the vertical 
expulsion of rock from it, thus resulting in a constant (or 
growing) deformation zone thickness (Fig. lob). 

This steady-state transpression has been modelled by 
keeping the zone-boundary half-width (h) constant, but 
otherwise running the model in the same way as 

previously. Points are periodically added at the edge of 
the zone to record the strain of new material incorporated 
in to the zone. The results of this modelling for p= 10” 
and 6 = 90” are shown in Fig. 11. 

The strain intensity for the pure-shear strain compo- 
nent for steady-state transpression can be seen in Fig. 
1 l(c). There are two maxima at the top of the deforming 
zone, at h = + 0.5, with strain intensity being lowest at the 
edges of the deforming zone. The k values for steady-state 
transpression have similar patterns for non-steady-state 
transpression (Fig. 1 lb). The foliations for steady-state 
transpression have maximum obliquity and minimum 
dips at the zone boundaries, with variations in orienta- 
tion being dependent on the height in the zone. 
Lineations have the lowest plunge and an azimuth 
nearly perpendicular to the zone boundaries at the edges 
of the zone (except for the special case where p< 13.28” 
for c1> 55%, where lineation is horizontal in the centre of 
the zone). Towards the centre of the deforming zone, 
lineations generally become steeper and more parallel to 
the zone boundaries. 

The variations in strain described above are all due to 
the fact that regions close to the zone boundaries have 
been introduced to the deforming zone later than points 
further in towards the centre, and have therefore under- 
gone less deformation. 
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Fig. 9. (a) k value and (b) lower-hemisphere, equal-area stereoplot of deformation with /3= 50”, 6 = 50” and r = 67%. 
Foliation is represented by solid arrow heads and lineation by hollow arrow heads. Arrows point from the centre of the zone to 
the edge. (c) k value and (d) lower-hemisphere, equal-area stereoplot of deformation with j3 = 50”, 6 = lo” and r = 67%. The k 
values have been plotted in (a) and (c) so that they are easy to read. The actual shape and orientation of the deformed zone for a 
zone-boundary dip of 10” is shown in (e). The height labels on the stereoplots relate to horizontal levels after tilting, not to the 

height levels in the original models. 

ASYMMETRIC STEADY-STATE 

TRANSPRESSION 

If the new material added to the deforming zone comes 
from one side only, as in Fig. 10(c), asymmetric fabric 
patterns are developed (Fig. 12). The pure-shear strain 
intensity varies asymmetrically across the deforming 
zone (Fig. 12~) while the k value patterns become a 
skewed version of that for symmetric steady-state 
transpression, with lower k values nearer the fixed zone 

boundary. The azimuth of the lineation varies from sub- 
parallel to the zone boundary at the fixed boundary to 
sub-perpendicular at the opposite boundary. The plunge 
of the lineation remains sub-vertical throughout most of 
the deforming zone, but on the non-fixed boundary the 
plunge decreases to 45”. The foliation patterns show a 
similar asymmetry, striking sub-parallel to the zone 
boundary with a sub-vertical dip at the fixed edge, and 
striking and dipping at 45” to the zone boundary on the 
opposite edge. At lower levels the pattern becomes 
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Fig. 10. (a) Steady-state transpression accommodated by the B value 
progressively reducing to O”, so the deforming zone does not disappear 
completely. The zone therefore becomes one of horizontal simple-shear, 
not transpression. (b) Symmetrical steady-state transpression where the 
deforming zone ‘grows’ at both sides and (c) asymmetrical steady-state 
transpression where the deforming zone ‘grows’ on one side only, with 
the increasing approach of the zone boundaries. Dashed lines indicate 
the new position of the boundaries. Note that in the model this growth 

occurs incrementally, not in one step as indicated here. 

a) Foli 

slightly more complex, due to the complex pure-shear 
strain component. 

THE SOUTH MAYO TROUGH 

The asymmetric steady-state transpression model 
could create the asymmetrical strain observed in many 
transpression zones. This may be caused by a strong 
rheological contrast across one boundary of the deform- 
ing zone, as is the case in the transpression zone which 
deformed the South Mayo Trough, western Ireland. 

The South Mayo Trough consists of low-grade 
Ordovician and Silurian sediments, forming a 20 km 
wide, E-W-trending synclinorium. The fold-axial surface 
of this, and other smaller folds in the area, is always 
steeply dipping, with an E-W-trending sub-vertical fold 
axis. The Ordovician sediments were deposited in a 
forearc basin, conformably on top of an ophiolite 
basement, during limited N-S syn-depositional short- 
ening (Dewey and Ryan, 1990). The Silurian sediments 
were deposited in three geographically and temporally 
separate basins unconformably on top of the Ordovician 
sediments, and the whole area subsequently deformed in 
the late Silurianearly Devonian under sinistral trans- 
pression by the relative movements of the Dalradian 
blocks of North Mayo and Connemara (Hutton and 
Dewey, 1988). The strain associated with the transpres- 
sive event is very weak in the south, and increases 
northwards to a maximum against the Silurian-Dalra- 
dian boundary (McKerrow and Campbell, 1960; Dewey, 
1967). This northern boundary to the transpressive event 
not only divides deformation styles, but also forms a 
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Fig. 11. Deformation patterns for steady-state transpression, /I = lo”, 6 = 90” and a = 50%. (a) Foliation, (b) k value, (c) pure- 
shear strain component strain intensity in dimensionless units and (d) lower-hemisphere, equal-area stereoplot of foliation 
(solid arrow heads) and lineation (hollow arrow heads). Arrows point from the centre of the zone to the edge. The strain 

applied is equivalent to a = 50%, the original deforming zone has halved in width. 



1198 B. J. DUTTON 

h no n -h 0 h 

Fig. 12. Deformation patterns for asymmetric steady-state transpression, b = lo”, 6 = 90” and (Y = 50%. (a) Foliation, (b) k 
value, (c) pure-shear strain component strain intensity in dimensionless units and (d) lower-hemisphere, equal-area stereoplot 
of foliation (solid arrow heads) and lineation (hollow arrow heads). Arrows point from the centre of the zone to the edge. The 
strain applied is equivalent to CC = 50% (the original deforming zone has halved in width). The side of the zone through which 

new material is incorporated into the deforming zone is indicated as the ‘growing’ side. 
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rheological boundary between relatively weak sediments 
to the south and the relatively strong, metamorphosed 
rocks of the Dalradian block to the north. The southern 
boundary to the transpressive deformation is not well 
defined, as the strain dies out gradually southwards. It is, 
therefore, tentatively proposed that the deformation 
could have formed in a way similar to the asymmetric 
steady-state transpression model. The deformation initi- 
ally was concentrated at the northern boundary of the 
trough. After a certain point in time this initial zone could 
no longer accommodate the strain applied, so the 
deforming zone widened. To the north of the zone lies 
the relatively hard, metamorphosed Dalradian block, so 
the zone widened southwards only thus creating an 
asymmetrical strain pattern in the rocks. 

The northern part of the South Mayo Trough has been 
mapped by the author to determine the orientation of 
foliation and lineation, and the strain variation across the 
area. Data taken from a N-S section across South Mayo 
are shown in Fig. 13. To the west of this section later 
folding effects the rocks (Kelly and Max, 1979), but 
foliation and lineation have the same orientation as 
shown in Fig. 13 once the rotation caused by the folding 
has been removed. These field data are compared to the 
asymmetric steady-state transpression model (fi = 50”, 
6 = 45”), corresponding to the dip of the northern zone 
boundary of the South Mayo Trough (Ryan et al., 1983) 
with a contraction of 50%, approximately the shortening 
indicated by the folding in the northern region of the 
trough (Dewey, 1967). The orientation of foliation and 
lineation predicted by the model are shown in Fig. 13(d). 

There is a single conglomerate bed of variable 
thickness which crops out on the southern and northern 

margin of the Croagh Patrick Silurian. The k values of 
the strain in this conglomerate, determined using the Rf/t$ 
method (Lisle, 1985) from field photographs of the 
principle planes of strain, are all less than 1 but vary 
greatly from outcrop to outcrop making a comparison 
with the model impossible. This variation also means an 
accurate comparison of strain intensity between the 
model and the South Mayo Trough is not possible. The 
model predicts that, overall, the strain at the fixed 
boundary has a higher intensity than at the ‘growing’ 
boundary. This compares favourably with field observa- 
tion, where the strain is at its maximum in the north (the 
fixed boundary) and falling away to zero at the southern 
margin of the trough (Ryan and Dewey, 1991). 

The model predicts foliation to have an approxi- 
mately constant WNW-ESE strike, with a sub-vertical 
dip in the south changing to a steep northerly dip in the 
north. The foliation in the South Mayo Trough has 
these orientations. Whereas the model predicts that the 
lineation should be steep, with a complex azimuth 
variation, the stretching lineation in the South Mayo 
Trough is weak with a sub-horizontal plunge, E-W in 
the south and NE-SW in the north. This difference may 
be due to the folding in the rocks of the South Mayo 
Trough which accommodates vertical extension but not 
the required horizontal component. The latter has 
resulted in fold-axis parallel stretching forming a sub- 
horizontal stretching lineation. This strain partitioning 
between the folding and the stretching lineation is not 
part of the transpression model, which predicts the 
orientation of overall maximum extension, thus provid- 
ing a possible explanation for the difference between it 
and the field data. 
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kg. 13. (a) Summary map of the geology of the South Mayo Trough. (b) Field data from two areas of the South Mayo 
Trough. (c) Summary of field data. (d) Lower-hemisphere, equal-area stereoplot of foliation (solid arrow heads) and lineation 
(hollow arrow heads) patterns. Arrows point from the centre of the zone to the edge. The strain applied is equivalent to 
a = 50% (the original deforming zone has halved in width), and p = 50”, 6 = 45”. The side of the zone through which new 

material is incorporated into the deforming zone is indicated as the ‘growing’ side. 

) Model Predictions 

- Pole to foliation + Stretching lineation ‘Growing’ wall 

DISCUSSION 

The model for transpression with welded boundaries, 
together with the asymmetric steady-state model for 
transpression, go some way in explaining the patterns of 
strain variation across the South Mayo Trough. How- 
ever, the model does not explain all the variations in 
strain across South Mayo, nor should it be expected to 
considering its simplicity. 

The models of transpression presented in this paper 
have many variables. The orientation of the zone 
boundaries, the height above the ‘base’ level, the tl, /I 
and 6 values, as well as whether the deformation zone 
grew symmetrically or asymmetrically, if at all, must 
be known. It may be possible to ‘tweak’ a few or all 
of these variables to attain a match between the 
model and a range of field areas. For the South 
Mayo Trough, the orientation of one zone boundary 
and the a and 6 values are known quite accurately, 
whereas the other factors are not and can only be 
estimated. It is difficult to test whether or not the 
steady-state transpression model is applicable in 

nature as we only see the end result. One test would 
be to compare the relative ages of the initiation of 
deformation. The steady-state transpression model 
predicts that these should vary systematically across 
the deforming zone. 

The no-slip condition of the boundaries is not always 
observed in real transpression zones, and many zones do 
have at least one faulted boundary with dip-slip and/or 
strike-slip components. Strike-slip faults bounding trans- 
pression zones cannot accommodate.all the simple-shear 
strain applied to an area of transpression, and some of 
this strain must be distributed across the deforming zone 
if it is to remain a transpression zone. Strain must 
therefore partition between distributed strain across the 
zone and strain concentrated in the fault region (Tikoff 
and Teyssier, 1994; Jones and Tanner, 1995; Teyssier et 
al., 1995). Dip-slip bounding faults will reduce the 
concentration of extrusion in the centre of the deforming 
zone predicted by the Robin and Cruden (1994) 
transpression model. Strain may partition into dip-slip 
movements on a bounding fault and distributed strain 
across the deforming zone, with the extrusion being 
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concentrated in the centre, as in Sanderson and Marchini 
(1984) (Fig. 13b). 
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